Controlling stiffness in nanostructured hydrogels produced by enzymatic dephosphorylation.
نویسندگان
چکیده
In the present paper, we report on enzyme-initiated self-assembly of Fmoc (fluoren-9-ylmethoxycarbonyl)-tyrosine hydrogels by enzymatic dephosphorylation under physiological conditions and provide evidence for the ability to control the modulus. Upon enzyme action, a self-assembling network of interconnecting fibres is formed, observed by cryo-SEM (scanning electron microscopy) and TEM (transmission electron microscopy). The concentration of alkaline phosphatase added to the Fmoc-tyrosine phosphate ester precursor solution had a direct effect on the gelation time, mechanical properties and molecular arrangements as determined through oscillatory rheology, fluorescence spectroscopy and CD spectroscopy. This highly tuneable cost-effective gel system may have applications in three-dimensional cell culture.
منابع مشابه
Cerium oxide nanoparticle-mediated self-assembly of hybrid supramolecular hydrogels.
Hybrid supramolecular hydrogels are prepared by non-enzymatic dephosphorylation of N-fluorenylmethyloxycarbonyl tyrosine-(O)-phosphate (FMOC-Tyr-P) using catalytic cerium oxide nanoparticles. The organic-inorganic hydrogels exhibit enhanced viscoelastic properties compared with analogous materials prepared using alkaline phosphatase.
متن کاملEvaluating the effect of pH on mechanical strength and cell compatibility of nanostructured collagen hydrogel by the plastic compression method
Objective(s): One of the main constraints of collagen hydrogel scaffolds for using in tissue engineering is mechanical weakness. Plastic compression (PC) is a physical method to overcome the mechanical limitation of collagen hydrogel. Materials and Methods: In this study, the effects of pH on mechanical and biological properties of PC hydrogels were investigated. Collagen hydrogels were fabrica...
متن کاملControlling the rheology of gellan gum hydrogels in cell culture conditions.
Successful culturing of tissues within polysaccharide hydrogels is reliant upon specific mechanical properties. Namely, the stiffness and elasticity of the gel have been shown to have a profound effect on cell behaviour in 3D cell cultures and correctly tuning these mechanical properties is critical to the success of culture. The usual way of tuning mechanical properties of a hydrogel to suit t...
متن کاملThe Unexpected Advantages of Using D-Amino Acids for Peptide Self-Assembly into Nanostructured Hydrogels for Medicine
Self-assembled peptide hydrogels have brought innovation to the medicinal field, not only as responsive biomaterials but also as nanostructured therapeutic agents or as smart drug delivery systems. D-amino acids are typically introduced to increase the peptide enzymatic stability. However, there are several reports of unexpected effects on peptide conformation, self-assembly behavior, cytotoxic...
متن کاملInjectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture.
We report an injectable hydrogel scaffold system with tunable stiffness for controlling the proliferation rate and differentiation of human mesenchymal stem cells (hMSCs) in a three-dimensional (3D) context in normal growth media. The hydrogels composed of gelatin-hydroxyphenylpropionic acid (Gtn-HPA) conjugate were formed using the oxidative coupling of HPA moieties catalyzed by hydrogen perox...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 37 Pt 4 شماره
صفحات -
تاریخ انتشار 2009